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Monolayer-protected clusters (MPCs), especially with sub-
nanometer-sized metal corks, provide us good opportunities to
study evolution of electronic, optical, and chemical properties as a
function of a core size as well as to develop novel building blocks
for various nanoscale devices. To attain these ends, preparation of
MPCs with well-defined compositions is of primary importance.
Although one can control the average core size of the MPCs o SRS . S
prepared by the conventional chemical route based on nucleationgjgure 1. Appearance of ge|s containing fractionated clusters§.
of zerovalent metal atoms in the presence of thicisch a method
inevitably produces a distribution in the core sizes due to statistical
fluctuations in the nucleation process. Thus, development of size-
selection and characterization techniques with atomic resoléfién

4
Lﬂ_ >
is indispensable in achieving this formidable task. Recently, Whetten = ' e
and co-workers fractionated gold clusters protected by monolayers 2 &J * l . 2 &
5
| e §

of glutathione (GSH= y-Glu-Cys-Gly) by using polyacrylamide '-_g 71 o s
gel electrophoresis (PAGE) and identified the most abundant species M Iy_..szs 13 214 o515
as Ag(SG)e by mass spectrometf# In the present study, we g 3

extend mass spectrometric measurement to a wider range of PAGE- E" 5- &3 2816 100
separated Au:SG clusters, demonstrating isolation of magic- £ 4 o ” . 4 J\
numbered gold clusters: AgSG) i, Auxi(SGho, AUzsi1(SGhasi, 5 r = 5 - -
Auog(SGhs, AUz (SGhs, and Aug(SG)s Optical measurements 6 I—“'

illustrate that the electronic structures of these Au:SG clusters are —»_L‘L 5 J\\
molecular-like and are heavily dependent on their compositions. & 1 0925, 128

The Au:SG clusters were prepared by the Himeji group by .
following the recipe reported previouslylEM observation of the 6
Au:SG clusters thus prepared revealed that their core sizes appear 100 ' 2000 ' ad0 %% Mass number (kDa) s
to be~1 nm (Supporting Information, Figure S1). The crude sample Ma’:s "Lfmba”m)
of the Au:SG clusters was further fractionated into six components F9ure 2. Negative-ion ESI mass spectra of clusterss (left). Mass peaks

. - . . . marked by asterisks are due to impurities from adjacent fractions. The right
by a high-resolution PAGE (Supporting Information, Figure 32). panels show the deconvoluted spectra. The red bars indicate the molecular

These fractions are referred to &s6 in order of their mobility weights of Au(SG)n clusters withn—mvalues designated on the envelopes.
(Figure 1).

The chemical compositions df~6 were investigated by using
an electrospray ionization (ESI) mass spectrometer constructed at
IMS (Supporting Information, Figure S3). Figure 2 displays the
negative-ion ESI mass spectra bf6. Note that the extensive
fragmentation into low-mass ions such as (AugGand Au(SG)~
reported previoushPis significantly suppressed under an optimized
condition for desolvation. Each spectrum is composed of a series
of multiply charged anions originated from deprotonation of the
carboxyl moieties of the GS ligands. The molecular weights
determined from the deconvoluted spectra (Figure 2) are well
reproduced by combinations of Au atoms, GS ligands, and CI
atoms: clusterd, 2, 4, 5, and6 are formulated as Ay(SG);Cly,
AU21(SG)_|_2C|X, AU23(SG)_|_6C|X, AU32(SG)_|_8C|X, and AL@,Q(SGk3C|X,

respectlvely10 Fraction 3 is dominated by Aps(SG4Cly but is
contaminated appreciably by Auand Aus clusters. The ClI
constituents, originated from HAug lthe starting material for the
cluster preparation, will not be denoted explicitly hereafter for
simplicity. The most important finding is that a series of nearly
single-sized ASG), clusters is isolated by the PAGE method.
Preferential formation of the A(USG), clusters withn = 18,

21, 25, 28, 32, and 39 indicates that they are relatively stable as
compared with other-sized clusters. The most plausible explanation
for their marked stability is the intrinsic stability of the Au cores
arising from closing of geometrical and/or electronic shells. Indeed,
truncated octahedral fcc structure has been theoretically suggested
for the Au core of Agg(SCHs).4.1t However, sequential completion

of polyhedral shell structures does not explain the whole sequence
TSItrl](sthgl;te for Molecular Science and The Graduate University for Advanced of the Au core sizes observed here. Moreover, other computational
* Himeji Institute of Technology. studies suggest that the core structures obg8CHs)1s and
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— electronically excited state. We must await theoretical studies for

_,_/“"
x3 ;,,,/‘f’ 1 detailed assignment of the optical and PL spectra reported here.
I | o To summarize, we report herein mass spectrometric charac-
) — 2 terization of electrophoretically fractionated Au:SG clusters.
E N ' L The main contribution of the present work has been to isolation of
g _____/___ — 3 a series of magic-numbered clusters, ;&8G)1, Au(SG)a,
- -— AUzs.:1(SGhar1, AUzg(SGhs, AuUsx(SGls, and Aug(SGls The
"§ . — 4 results provide basic guidelines for further experimental and
£ ' L — theoretical studies on structures, stabilities, and optical properties
B _ 5 of small gold MPCs as well as for development of new cluster-
’ /—//BC__'__————-—" based materials.
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Figure 3. Optical absorption (green), photoemission (red), and photo-
excitation (blue) spectra of aqueous solutionsle® (300 K)2° The PL
spectrum ofl could not be obtained probably due to the small yield.

Table 1. Spectroscopic Features of 1—6

. Egep Eans Bss ) Sokendai (Soken/K02-1).
fracton formula (evy S eV 4 Note Added after ASAP.The abscissa units on the left side of
; ﬁﬂlﬁggil ig 16 04 110 Figure 2 were incorrect in the version published 5/6/2004. The final
3 AU;;l(SGZ)IAil 15 18 04 3 10°3 version published 5/7/2004 and the print version are correct.
g ﬁﬂziggiz ig ig 82 gi igi Supporting Information Available: Experimental procedures and
6 AUso(SGhs <1.2 16 0.1 A 104 TEM data (PDF). This material is available free of charge via the

Internet at http://pubs.acs.org.

a Absorption onset? Emission maximum¢ Stokes shiftd PL quantum
yield.
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